Nisin resistance of Streptococcus bovis.

نویسندگان

  • H C Mantovani
  • J B Russell
چکیده

The growth of Streptococcus bovis JB1 was initially inhibited by nisin (1 microM), and nisin caused a more than 3-log decrease in viability. However, some of the cells survived, and these nisin-resistant cells grew as rapidly as untreated ones. To see if the nisin resistance was merely a selection, nisin-sensitive cells were obtained from agar plates lacking nisin. Results indicated that virtually any nisin-sensitive cell could become nisin-resistant if the ratio of nisin to cells was not too high and the incubation period was long enough. Isolates obtained from the rumen were initially nisin sensitive, but they also developed nisin resistance. Nisin-resistant cultures remained nisin resistant even if nisin was not present, but competition studies indicated that nisin-sensitive cells could eventually displace the resistant ones if nisin was not present. Nisin-sensitive, glucose-energized cells lost virtually all of their intracellular potassium if 1 microM nisin was added, but resistant cells retained potassium even after addition of 10 microM nisin. Nisin-resistant cells were less hydrophobic and more lysozyme-resistant than nisin-sensitive cells. Because the nisin-resistant cells bound less cytochrome c, it appeared that nisin was being excluded by a net positive (i.e., less negative) charge. Nisin-resistant cells had more lipoteichoic acid than nisin-sensitive cells, and deesterified lipoteichoic acids from nisin-resistant cells migrated more slowly through a polyacrylamide gel than those from nisin-sensitive cells. These results indicated that lipoteichoic acids could be modified to increase the resistance of S. bovis to nisin. S. bovis JB1 cultures were still sensitive to monensin, tetracycline, vancomycin, and bacitracin, but ampicillin resistance was 1,000-fold greater.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The bacteriocins of ruminal bacteria and their potential as an alternative to antibiotics.

Beef cattle have been fed ionophores and other antibiotics for more than 20 years to decrease ruminal fermentation losses (e.g methane and ammonia) and increase feed efficiency, and these improvements have been explained by an inhibition of gram-positive ruminal bacteria. Ionophores are not used to treat human disease, but there has been an increased perception that antibiotics should not be us...

متن کامل

Bovicin HC5, a bacteriocin from Streptococcus bovis HC5.

Previous work indicated that Streptococcus bovis HC5 had significant antibacterial activity, and even nisin-resistant S. bovis JB1 cells could be strongly inhibited. S. bovis HC5 inhibited a variety of Gram-positive bacteria and the spectrum of activity was similar to monensin, a commonly used feed additive. The crude extracts (ammonium sulfate precipitation) were inactivated by Pronase E and t...

متن کامل

Bacteriocin activity and resistance in livestock pathogens

Since their discovery in the first half of the 19th century, antibiotics have been extensively used in livestock production as therapeutic agents and growth promoters. In many countries, antibiotic therapy is still the first choice to combat microbial infections in livestock animals, and their efficacy and cost-effectiveness contribute to their popularity. Nevertheless, the continuous use of an...

متن کامل

Structural basis of lantibiotic recognition by the nisin resistance protein from Streptococcus agalactiae

Lantibiotics are potent antimicrobial peptides. Nisin is the most prominent member and contains five crucial lanthionine rings. Some clinically relevant bacteria express membrane-associated resistance proteins that proteolytically inactivate nisin. However, substrate recognition and specificity of these proteins is unknown. Here, we report the first three-dimensional structure of a nisin resist...

متن کامل

Molecular and genetic characterization of a novel nisin variant produced by Streptococcus uberis.

Streptococcus uberis is one of the principal causative agents of bovine mastitis. In this study, we report that S. uberis strain 42 produces a lantibiotic, nisin U, which is 78% identical (82% similar) to nisin A from Lactococcus lactis. The 15.6-kb nisin U locus comprises 11 open reading frames, similar in putative functionality but differing in arrangement from that of the nisin A biosyntheti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 67 2  شماره 

صفحات  -

تاریخ انتشار 2001